sábado

Estadística y política

En esta actividad estadística veremos el sistema d'Hondt como un procedimiento de conversión de votos en escaños, creado por Victor d'Hondt, que se caracteriza por dividir a través de distintos divisores los totales de los votos obtenidos por los distintos partidos, produciéndose secuencias de cocientes decrecientes para cada partido y asignándose los escaños a los promedios más altos.

Supongamos unas elecciones a las que se presentan cinco partidos, entre los que deben repartirse siete escaños.
Partido APartido BPartido CPartido DPartido E
Votos340 000280 000160 00060 00015 000
Antes de empezar la asignación de escaños hace falta dibujar una tabla de 7 filas (número de escaños) por 5 columnas (número de partidos). En la primera fila escribimos el número total de votos recibidos por cada partido (divisor 1). Es preferible ordenar los partidos por número de votos, así se simplificarán las siguientes fases del algoritmo que ejemplificamos en la tabla:
Partido APartido BPartido CPartido DPartido E
Votos340 000280 000160 00060 00015 000
Escaño 1(340 000/1 =) 340 000(280 000/1 =) 280 000(160 000/1 =) 160 000(60 000/1 =) 60 000(15 000/1 =) 15 000
Escaño 2(340 000/2 =) 170 000(280 000/1 =) 280 000(160 000/1 =) 160 000(60 000/1 =) 60 000(15 000/1 =) 15 000
Escaño 3(340 000/2 =) 170 000(280 000/2 =) 140 000(160 000/1 =) 160 000(60 000/1 =) 60 000(15 000/1 =) 15 000
Escaño 4(340 000/3 =) 113 333(280 000/2 =) 140 000(160 000/1 =) 160 000(60 000/1 =) 60 000(15 000/1 =) 15 000
Escaño 5(340 000/3 =) 113 333(280 000/2 =) 140 000(160 000/2 =) 80 000(60 000/1 =) 60 000(15 000/1 =) 15 000
Escaño 6(340 000/3 =) 113 333(280 000/3 =) 93 333(160 000/2 =) 80 000(60 000/1 =) 60 000(15 000/1 =) 15 000
Escaño 7(340 000/4 =) 85 000(280 000/3 =) 93 333(160 000/2 =) 80 000(60 000/1 =) 60 000(15 000/1 =) 15 000
Total de cargos electos33100
% votos40%33%19%7%2%
% escaños43%43%14%0%0%
Como podemos apreciar que el reparto de escaños no se corresponde al que surgiría de una asignación simple mediante, por ejemplo, una "regla de tres".
(Fuente Wikipedia)

Más información y casos prácticos en:
Pseudoblog
Hipertextual


No hay comentarios:

Publicar un comentario